背景:情緒識別是重要的問題,情緒運算(Affective Computing)提出努力將電腦和一般機器與人互動之能力,表達線索,推斷和證明Emotional Intelligence-相關態度。情緒識別之成功,使機器識別使用者之情緒狀態,並收集情緒之資料進行處理,透過人機界面反應情緒。實現有效的情緒識別,種類繁多的方法和裝置已實施,主要是關於ER臉[4],[5],[6],講話[7],[8],信號的自主神經系統(ANS ),即心臟速率和皮膚電反應(GSR)[9],[10],[11]。
目的:
1.
developing the novel Hybrid
Adaptive Filtering (HAF) for efficiently isolating the emotion-related EEG-characteristics,
by applying Genetic Algorithms [13] to the representation of the EEG signal on
the Empirical Mode Decomposition [14] domain;
2.
further extending the
effectiveness of Higher Order Crossings (HOCs)-based feature vector, initially presented
in [15], by structuring it via the oscillatory pattern of the HAF-outputted EEG
signal, instead of the EEG signal itself (as used in [15]);
3.
examining the potential of the
intrinsic modes of the EEG signal to discriminate between different emotions;
4.
analyzing the classification
power of individual EEG channels or combinations of them using the proposed
feature extraction method.
0114心得:
作者透過情緒等相關文獻,整理出過去研究情緒的實驗,透過2D Valence-Arousal Model理論,在研究者透過實驗情緒識別(ER),使機器可以與人互動,表達線索,推斷和證明Emotional Intelligence-相關態度。
作者提出新的特徵擷取方法,為「HAF-HOC」(未看完)為目的項目一,利用臉部圖像以六種基本情緒為樣本,受測16人為慣用右手,9男7女,19~32歲之間。(待續)
沒有留言:
張貼留言