我的書櫃

2013年1月14日 星期一

Emotion Recognition from Brain Signals Using Hybrid Adaptive Filtering and Higher Order Crossings Analysis 文獻

出處:IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 1, NO. 2, JULY-DECEMBER 2010





背景:情緒識別是重要的問題,情緒運算(Affective Computing)提出努力將電腦和一般機器與人互動之能力,表達線索,推斷和證明Emotional Intelligence-相關態度。情緒識別之成功,使機器識別使用者之情緒狀態,並收集情緒之資料進行處理,透過人機界面反應情緒。實現有效的情緒識別,種類繁多的方法和裝置已實施,主要是關於ER[4][5][6],講話[7][8],信號的自主神經系統(ANS ),即心臟速率和皮膚電反應(GSR[9][10][11]。


目的:
1.      developing the novel Hybrid Adaptive Filtering (HAF) for efficiently isolating the emotion-related EEG-characteristics, by applying Genetic Algorithms [13] to the representation of the EEG signal on the Empirical Mode Decomposition [14] domain;
2.      further extending the effectiveness of Higher Order Crossings (HOCs)-based feature vector, initially presented in [15], by structuring it via the oscillatory pattern of the HAF-outputted EEG signal, instead of the EEG signal itself (as used in [15]);
3.      examining the potential of the intrinsic modes of the EEG signal to discriminate between different emotions;
4.      analyzing the classification power of individual EEG channels or combinations of them using the proposed feature extraction method.

0114心得:
作者透過情緒等相關文獻,整理出過去研究情緒的實驗,透過2D Valence-Arousal Model理論,在研究者透過實驗情緒識別(ER),使機器可以與人互動,表達線索,推斷和證明Emotional Intelligence-相關態度。
作者提出新的特徵擷取方法,為「HAF-HOC」(未看完)為目的項目一,利用臉部圖像以六種基本情緒為樣本,受測16人為慣用右手,9男7女,19~32歲之間。(待續)








沒有留言:

張貼留言